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Role of pump diffraction on the stability of localized structures
in degenerate optical parametric oscillators
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We show that the stability range of localized structuileS’s) in the form of minimum size phase domains
in degenerate optical parametric oscillators is enhanced by increasing the diffraction of the pump wave. Pump
diffraction enhances spatial oscillations of decaying tails of domain boundaries, whereas spatially oscillating
(weakly decayingtails prevent the collapse of LS’s, enhance their stability range, and allow the existence of
more complex LS’s in the form of molecules.

PACS numbe(s): 42.65.5f, 42.65.Y]

In degenerate optical parametric oscillatdiB0OPQO’S, obey the relatiom,/a;=1/2, as a consequence of the phase-
two different kinds of localized structur€kS’s) have been matching conditior{9]. On the other side, the curvature of
predicted so far. The first kind of LS’s is related to the co-the mirrors imposes a particular boundary condition not
existence of the trivial zero solution and a modulationallypresent in the model, which has been derived assuming the
unstable homogeneous solution. The LS’s of this kind arenean-field approximation. However, the use of resonators
characterized by a monotonic spatial decay of the field fawith curved mirrors close to a confocadr more generally,
from its center, and their shape is close to a secfijnction  self-imaging configuration is nearly equivalent to the plane
[1]. The subcritical regime of DOPO operation is needed tamirror case(with high Fresnel number and high level degen-
excite such LS's. eracy of transverse modesn which the diffraction coeffi-

The second kind of LS’s is related to the coexistence ofttient depends on the deviation of the resonator length from
two homogeneous solutions, with the same amplitude butonfocality. In particular, the exactly confocal resonator is
with phases differing byr. The LS’s of this kind can be diffractionless(every ray has the same optical length in one
considered as the round phase domain of minimum size resteund trip in the resonatpr This equivalence has been
ing on the homogeneous background of the opposite phashown analytically in Ref[10], using a propagation matrix
or, equivalently, as round loops of domain walBW'’s). approach, and experimentally in RET], where the observed
The DW's separating domains of opposite phase have begratterns were compared with the solutions of a mean-field
found in the form of isolated stripd®,3] and rings of small model, with good agreement.
radius[4—6], and were also experimentally observed in Ref. In the present caddqgs(1)], it is assumed that each field
[7]. The DW'’s are characterized by an oscillatory spatialresonates in a near-self-imaging cavity, with different
decay, which has been related with the stability of thd8S  lengths. Then the diffraction coefficients can take indepen-

In this paper we explore the spatial oscillatory decay ofdent values, their ratio being a parameter of the system. This
LS’s in DOPOQ'’s, and prove that this decay has a strongconfiguration allows to explore the role that diffraction plays
effect on LS stability. We show that the spatial modulationson the pattern formation properties in this system. In the
strongly depend on the diffraction coefficient of the pumpfollowing, we concentrate on the problem of the influence of
wave (on the ratio between diffraction coefficients of the diffraction on the stability of spatial localized structures.
fields), leading to an enhancement of the LS stability range The spatially homogeneous solution of E4) can be
when pump diffraction is increased. written as A;=Aexp(¢), Ao=(E—A?)/(1+iA,), where

We consider a doubly resonant DOPO, where both theq1)
subharmonic#\,(r,t) and the pump wavé(r,t) are close

to a cavity resonanc9] A2=—1+ A, A+ VEZ— (A, +Ag)2, (28
dAL=yi[ — (L+iA)A+AT Aol +iaVPA;, (18

1 A+ A
. PE 5 ¢=—  arcsi , (2b)
atAO:'yO[_(l+|A0)A0+ E_Al]+|aov Ao, (1b) 2 E
whereE is the amplitude of théexternal pumping field,A;  with the additional constraint for the phase cag(20.
andA, are the detunings of the resonatoys,and y, are the Solution (2) can adopt two values, with the same ampli-
decay parameters, ara] anda, are the diffraction coeffi- tude but different phase values, differing &y When spatial
cients. variations of the fields are allowed, both solutions can coex-

When the mirrors of the optical cavity are plane, the dif-ist, filling different regions in space and leading to a spatial
fraction coefficients of signal and pump fields in a DOPOQdistribution in the form of phase domaip4].
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FIG. 1. Amplitude profile of a LS across a line crossing its (a) Al
center, evaluated numerically for different pump diffractions, ]
=0.0005, 0.002, and 0.01. The amplitude of the modulation of the 1.2~ '
tails increases with increasing diffraction. The other parameters are '
a;=0.001,E=2, A;=—0.6, A,=0. |

»

As shown in Ref[4], the phase domains in DOPO can 0.8~ P Im ¢
expand or contract depending on the value of signal detun- LT T el
ing. For particular values of negative detuning the domains q ’ < IR
of arbitrary shape contract, but stop contracting at a mini- ‘\\
mum size, forming rotationally symmetric spatial localized 0.4 = Tl
structuregLS’s). These LS’s are characterized by a ring of Re ¢
zero intensity separating the states with different phase in-
side and outside the ring. _ N - 00 | m |

In the absence of modulational instabilities, the stability ‘ 1 0 1
of these LS’s depends on the mechanism opposing the con- A
traction of domains. One opposing mechanism appears when ) 1

a segment of a d,ark ring is repelle.d by the: opposite §egment, FIG. 2. Real par{continuous ling and imaginary parfdashed
thus compensating the contraction. This mechanism deje) of the square root of the eigenvalues of the spatial stability
scribes well the formation of LS's in the Swift-Hohenberg analysis as a function of signal detuning, for two different values of
equation[12], which describes the evolution of the signal the diffraction ratio:a=2 (a) anda=10 (b). The pump value is
field in DOPO operating close to the threshfid]. E=25.

Another mechanism is related to the fact that dark lines
(or domain boundarigsdo not decay monotonically but ex-
hibit oscillations in space. A segment of the dark ring im-
poses a spatial oscillation of the intensity, and the opposit
segment of the contracting ring can be fixed at an intensit
minimum. In this way, the ring is stabilized due to spatial
modulation, and consequently the stability of LS can be in
creased if the spatial oscillations are weakly damped.

This fact can be more clearly understood in the frame o
the Swift-Hohenberg equation, which allows for a comple-
mentary description of the dynamics in terms of a potential
functional. The interaction between the oscillating tails of the
domain boundaries generates an oscillating potential, whose Ai(r):KiJrAi(r)_ 3
local minima correspond to localized structures of different
orders at some ring radifi$4]. The stronger the modulations o ] o
are, the deeper the potential minima, thus enhancing the sta- After substituting Eq(3) in Eq. (1), and considering re-
bility range. gions in space not glose. to th_e domaln_ bqundary, the result-

Below we show that the physical mechanism responsibld'd System can be linearized in the deviatiofi¢r), and the
for the modulation of the tails in DOPO’s is the diffraction of SPatial evolution can be described by the sysfési
the pump wave at the transmission profile of the LS. In order
to show this, we performed a numerical integration of DOPO V25A=L- SA, (4)
equationg1) for different values ofiy. The amplitude along
a line crossing the center of a LS is plotted in Fig. 1, showing
that the diffraction strongly enhances the spatial oscillationswhere SA=(.A,, A3 A, AT is a four-component pertur-

The parameters defining the shape of a LS are the spatibhation vector and is the linear matrix. In the case of reso-
decay and the wave number of the oscillating tails. They camant pumpA,=0, £ is given by

be analytically evaluated by means of a spatial stability
analysis. Assume that the intensity of field is perturbed from

fts stationary valu€2) in some place in transverse spddae

Yo effects of boundaries, spatial perturbation, or defects in the
pattern$, and look how this perturbation decag@ grows

in space. For this purpose we consider evolution in space

instead of time. When the system has reached a stationary
tate, the solutions, which we assume have radial symmetry,

f:an be written in the time-independent form
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FIG. 3. Spatial oscillations of the field outside a LS, as evalu-

ated numerically{continuous ling and analytically from the spatial
stability analysis(dashed ling for E = 2.5, A;=0.5, A;=0, a;
=0.00025,a,=0.00125 @=5).

—ila 0 —(2ila)A, 0
0 ila 0 (2ila)A%
L= o — (5
iAT 0 —i(1+iA,) iAg
0 —iA; —iAg i(1—iAq)

The solutions of the linear syste() are of the form

SA(r)oc e, (6)
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where the wave vector is allowed to be complex, in the form

g=Reqg+ilmg. From Eg.(6), it follows that a negative

FIG. 4. Stability range of LS's, in the plané&,A,), evaluated

value of Reg indicates a spatial decay of perturbation, and isnumerically for different values of diffraction ratio. @) the cases
responsible for the localization, while a nonvanishing valuea=0 anda=0.5 are shown. In this case, the stability range is

of Imq indicates the presence of a nonmonotofuscilla-
tory) decay[16]. Thus, the solutior(3), with the deviation

enhanced at any value of the pump.(h), the casea=2 anda
=5 are shown. The stability range is enhanced now in the shad-

given by Eq.(6), represents the assymptotic profile of the LSowed region. Above a critical pump, modulational instabilities de-

far from its core.

The expressions of spatial decay and modulation follow

from the study of the eigenvalugs of £, which are the
solutions of the characteristic equation

a’u*—2a%A i+ (1—4al)u?—2A,(1-2al)u

+41,(1+1,)=0. (7

Comparing with the ansat$), we identify q= /.
The simple analytical solution of Eq7) exists in the
resonant signal case onlk, =0, being

1
E

wherel;=E—1.

[—1+4al,+1—8a(2a+1)1,]*2

a,u2=

8

crease the stability range.

In Fig. 2 we show Re (continuous ling and Img
(dashed ling evaluated from Eq(7) as a function of signal
detuning, for a fixed pump valuge=2.5 and two diffraction
values. In Fig. 2a) the diffraction ratio is relatively small
(a=2). In this case, Re is always nonzero for positive
values of the detuning, and thus the spatial perturbations
(due to the presence of DW'slecay for this particular value

of the pump. For negative detuningg,can become imagi-
nary. This corresponds to the “off-resonance” instability, in
which roll patterns emerge.

For larger values of the diffraction ratisee Fig. o),
where a=10], q becomes purely imaginary not only for
negative, but also for positive values of the detuning, indi-
cating the emergence of extended patterns in both sides of
the resonance. This new modulational instability, induced by
pump diffraction, has been discussed in R&8], and leads

We see from Eq(8) that the size of the LS depends on the to hexagonal patterns with different characteristics than those

diffraction ratioa in a nontrivial way. This is in contrast with

previous studies of pattern formation in many nonlinear op-

tical systems(Lugiato-Lefever approachil7]), where dif-

in the off-resonance region.
In order to check the validity of the previous results, Egs.
(1) were integrated numerically using a split-step algorithm

fraction appears simply as a scale factor in the wave vectopn a square grid with periodic boundary conditions. Linear

in the formak?.

and nonlinear terms were solved in real space by means of a
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(a) (b)
FIG. 7. Temporal evolution showing the decay to a single LS of
the molecules given in Figs(%» and Jc), when the diffraction is

decreased ta=1.

FIG. 5. Several bound statémolecules of localized structures,
obtained fora=5,E=2.5, A;=0, andA;=0.5. Double(a), triple In Fig. 3, a comparison between analytié@shed curve
(b) molecules, and a chain of five maxini@ are shown. and numerical result&continuous curvefor the spatial os-

cillations of the decaying tails of the domain boundary is
Runge-Kutta routine, while nonlocal terms were solved ingiven. The peak of the localized structure is omitted. Note
Fourier space with a fast Fourier transform code. We useghat the correspondence is very good, even close to the do-
typical grid sizes of 6464, and a temporal step of order main boundary(line of zero intensity. The parameters are
103, In every step a small amount of random noise Wasg=25, A;=0, A;=0.5, a1=0.00025,a=5. In this par-
added in the signal field. ticular case four minima of the intensity are visible. The
opposite segment of dark ring can be fixed by each of the
minima. Obviously, the LS of the minimum size, as fixed by
the first strongest maximum is the most stable one. However,
dark rings with larger radii can also be stabis.

The stability range of LS’s is limited from one side due to
contraction and annihilation of domains. From the other side
the LS existence range is limited either due to the presence
of modulational instabilitie§modulations grow, and fill the
whole spacg or due to expansion of domains. Since the
modulational instabilities are favored by diffraction, it may
seem that it has a negative effect on the stability of LS’s.
However, for pump values at which instabilities are absent, it

FIG. 6. Section across theaxis of the chain shown in Fig(®, is expected that the increase in the modulation of the tails
in the solid line. The dashed line represents a cut across across theuld prevent the full contraction, thus contributing to an
space outside the dark line. enhancement of the stability range.
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We have numerically calculated the stability range of LSequidistant points are seen. The field across a line outside the

for different values of pump diffractio(Fig. 4). In Fig. 4@,  domain boundary is given by the dashed line, evaluated at
the casea=0 (circles anda=1/2 (squaresare compared. Yy=20.
Open(full) symbols indicates disappearance of LS’s by col- In all these cases, the large value of the pump diffraction
lapse expansion of domairisy modulational instability In IS responsible for the stability of such complex structures,
this particular case, the stability of LS’s is clearly enhancedncreasing the spatial oscillations and then preventing the
for any value of the pump. The continuous curve denotes thgollapse. To show this fact, we have followed the evolution
existence range of the homogeneous soluti@s of the molecules given in Figs.(5, 5(c), decreasing the

In Fig. 4(b) we represent the cases-2 (squaresanda diffraction value toa=1 _an_d keeplng the_z other parameters
=5 (triangles. In this case, the stability range of LS's is Unchanged. The scenario is shown in Fig. 7, where the pic-
enhanced in the shadowed region, so there is an upper Iimyc\?sygag;r%z%g;?jzetg? gﬂté?(lalyl_sspaced times. The final state
forg:ﬁ I[rJ1ld|annl1|[(i_r\i/caaltlljec:I)crutlrf:fiosrfzsibfltlaltryIZPghearnp(iLejm;ingiffractions Concluding, we have investigated analytically the influ-

h hat th bility is al h d | ence of the pump diffraction in the stability of LS’s in a
show that the stability Is always enhanced, at least Up §opo. The possibility of varying diffractions by means of
some value of the pump.

. . . the use of appropiate resonators allows us to show the im-
The presence of strong modulations in the tails also al

| he f ; ; | i the f portant role that the amplitude oscillations of the spatial de-
ows the formation of more complex siructures, in the Ormcay of a LS play in its stability. Analytical results based on a

of bound states of single LS’s, or molecules. Some examplegayia| stapility analysis have been compared with the nu-
of several molecules with different complexity are shown in

. ; ; . ‘merical integration of the model, with good agreement.
Fig. 5. Examples with two and three maxima are shown in
Figs. 5a) and §b), and a chain composed of five maximais  We acknowledge discussions with C.O. Weiss, E. Rolda
shown in Fig. %c). The parameters chosen waae-5, A, and G.J. de Valaael. This work was supported by Acciones
=—-0.3,A,=0, E=2 for all the pictures. Integradas(Project No. HA1997-0130 NATO (Grant No.

The internal structure of the chain given in Figchis  HTECH.LG 970522, Sonderforschungs Bereich 407, and by
more clearly appreciated in Fig. 6, where a cut across th®GICYT of the Spanish Government under Grant No. PB98-
middle (y=32) has been donéull line). The five maxima at 0935-C03-02.

[1] K. Staliunas and V.J. $&hez-Morcillo, Opt. Commun139, 56, 1582 (1997); C.O. Weiss, M. Vaupel, K. Staliunas, G.
306 (1997); Stefano Longhi, Phys. Scb6, 611 (1997. Slekys, and V.B. Taranenko, Appl. Phys. B: Lasers @g.
[2] S. Trillo, M. Haelterman, and A. Sheppard, Opt. L&2, 970 151 (1999.
(1997). [11] L.A. Lugiato, C. Oldano, C. Fabre, E. Giacobino, and R.
[3] U. Peschel, D. Michaelis, C. Etrich, and F. Lederer, Phys. Rev. Horowicz, Nuovo Cimento C10D, 959 (1988.
E 58 R2745(1998. [12] K. Staliunas and V.J. $&hez-Morcillo, Phys. Lett. 241, 28
[4] K. Staliunas and V.J. $&hez-Morcillo, Phys. Rev. A7, (1998.
1454(1998. [13] G.J. de Valcecel, K. Staliunas, E. Rolda and V.J. Sachez-

[5] G.L. Oppo, A.J. Scroggie, and W.J. Firth, J. Opt. B: Quantum
Semiclass. Optl, 153(1999.

[6] M. Le Berre, D. Leduc, E. Ressayre, and A. Tallet, J. Opt. B:
Quantum Semiclass. Opt, 153(1999.

[7] V.B. Taranenko, K. Staliunas, and C.O. Weiss, Phys. Rev

Morcillo, Phys. Rev. A54, 1609(1996.

[14] V.J. Sachez-Morcillo and K. Staliunas, Phys. Rev6g 6153
(1999.

[15] W.J. Firth and A.J. Scroggie, Phys. Rev. L&, 1623(1996.
Lett. 81, 2236(1998. [16] (Gl.;'é&Dee and W. van Saarloos, Phys. Rev. Léf, 2641

[8] A.V. Buryak and Y.S. Kivshar, Phys. Rev. &, R41(1995. ’

[9] G.L. Oppo, M. Brambilla, and L.A. Lugiato, Phys. Rev.48, [17] L.A. Lugiato and R. Lefever, Phys. Rev. Le58, 2209(1987).
2028(1994). [18] K. Staliunas and V.J. $&hez-Morcillo Opt. Commun(to be

[10] V.B. Taranenko, K. Staliunas, and C.O. Weiss, Phys. Rev. A Published.



