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Role of pump diffraction on the stability of localized structures
in degenerate optical parametric oscillators
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~Received 1 July 1999; revised manuscript received 4 January 2000!

We show that the stability range of localized structures~LS’s! in the form of minimum size phase domains
in degenerate optical parametric oscillators is enhanced by increasing the diffraction of the pump wave. Pump
diffraction enhances spatial oscillations of decaying tails of domain boundaries, whereas spatially oscillating
~weakly decaying! tails prevent the collapse of LS’s, enhance their stability range, and allow the existence of
more complex LS’s in the form of molecules.

PACS number~s!: 42.65.Sf, 42.65.Yj
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In degenerate optical parametric oscillators~DOPO’s!,
two different kinds of localized structures~LS’s! have been
predicted so far. The first kind of LS’s is related to the c
existence of the trivial zero solution and a modulationa
unstable homogeneous solution. The LS’s of this kind
characterized by a monotonic spatial decay of the field
from its center, and their shape is close to a sech(x) function
@1#. The subcritical regime of DOPO operation is needed
excite such LS’s.

The second kind of LS’s is related to the coexistence
two homogeneous solutions, with the same amplitude
with phases differing byp. The LS’s of this kind can be
considered as the round phase domain of minimum size
ing on the homogeneous background of the opposite ph
or, equivalently, as round loops of domain walls~DW’s!.
The DW’s separating domains of opposite phase have b
found in the form of isolated stripes@2,3# and rings of small
radius@4–6#, and were also experimentally observed in R
@7#. The DW’s are characterized by an oscillatory spa
decay, which has been related with the stability of the LS@8#.

In this paper we explore the spatial oscillatory decay
LS’s in DOPO’s, and prove that this decay has a stro
effect on LS stability. We show that the spatial modulatio
strongly depend on the diffraction coefficient of the pum
wave ~on the ratio between diffraction coefficients of th
fields!, leading to an enhancement of the LS stability ran
when pump diffraction is increased.

We consider a doubly resonant DOPO, where both
subharmonicsA1(r ,t) and the pump waveA0(r ,t) are close
to a cavity resonance@9#

] tA15g1@2~11 iD1!A11A1* A0#1 ia1¹2A1 , ~1a!

] tA05g0@2~11 iD0!A01E2A1
2#1 ia0¹2A0 , ~1b!

whereE is the amplitude of the~external! pumping field,D1
andD0 are the detunings of the resonators,g1 andg0 are the
decay parameters, anda1 and a0 are the diffraction coeffi-
cients.

When the mirrors of the optical cavity are plane, the d
fraction coefficients of signal and pump fields in a DOP
PRE 611063-651X/2000/61~6!/7076~5!/$15.00
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obey the relationa0 /a151/2, as a consequence of the phas
matching condition@9#. On the other side, the curvature o
the mirrors imposes a particular boundary condition n
present in the model, which has been derived assuming
mean-field approximation. However, the use of resona
with curved mirrors close to a confocal~or more generally,
self-imaging! configuration is nearly equivalent to the plan
mirror case~with high Fresnel number and high level dege
eracy of transverse modes!, in which the diffraction coeffi-
cient depends on the deviation of the resonator length fr
confocality. In particular, the exactly confocal resonator
diffractionless~every ray has the same optical length in o
round trip in the resonator!. This equivalence has bee
shown analytically in Ref.@10#, using a propagation matrix
approach, and experimentally in Ref.@7#, where the observed
patterns were compared with the solutions of a mean-fi
model, with good agreement.

In the present case@Eqs.~1!#, it is assumed that each fiel
resonates in a near-self-imaging cavity, with differe
lengths. Then the diffraction coefficients can take indep
dent values, their ratio being a parameter of the system. T
configuration allows to explore the role that diffraction pla
on the pattern formation properties in this system. In
following, we concentrate on the problem of the influence
diffraction on the stability of spatial localized structures.

The spatially homogeneous solution of Eq.~1! can be
written as Ā15Aexp(iw), Ā05(E2Ā1

2)/(11 iD0), where
@11#

A25211D1D01AE22~D11D0!2, ~2a!

w52
1

2
arcsinS D11D0

E D , ~2b!

with the additional constraint for the phase cos(2w).0.
Solution ~2! can adopt two values, with the same amp

tude but different phase values, differing byp. When spatial
variations of the fields are allowed, both solutions can co
ist, filling different regions in space and leading to a spa
distribution in the form of phase domains@4#.
7076 ©2000 The American Physical Society
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As shown in Ref.@4#, the phase domains in DOPO ca
expand or contract depending on the value of signal de
ing. For particular values of negative detuning the doma
of arbitrary shape contract, but stop contracting at a m
mum size, forming rotationally symmetric spatial localiz
structures~LS’s!. These LS’s are characterized by a ring
zero intensity separating the states with different phase
side and outside the ring.

In the absence of modulational instabilities, the stabi
of these LS’s depends on the mechanism opposing the
traction of domains. One opposing mechanism appears w
a segment of a dark ring is repelled by the opposite segm
thus compensating the contraction. This mechanism
scribes well the formation of LS’s in the Swift-Hohenbe
equation@12#, which describes the evolution of the sign
field in DOPO operating close to the threshold@13#.

Another mechanism is related to the fact that dark lin
~or domain boundaries! do not decay monotonically but ex
hibit oscillations in space. A segment of the dark ring im
poses a spatial oscillation of the intensity, and the oppo
segment of the contracting ring can be fixed at an inten
minimum. In this way, the ring is stabilized due to spat
modulation, and consequently the stability of LS can be
creased if the spatial oscillations are weakly damped.

This fact can be more clearly understood in the frame
the Swift-Hohenberg equation, which allows for a comp
mentary description of the dynamics in terms of a poten
functional. The interaction between the oscillating tails of t
domain boundaries generates an oscillating potential, wh
local minima correspond to localized structures of differe
orders at some ring radius@14#. The stronger the modulation
are, the deeper the potential minima, thus enhancing the
bility range.

Below we show that the physical mechanism respons
for the modulation of the tails in DOPO’s is the diffraction
the pump wave at the transmission profile of the LS. In or
to show this, we performed a numerical integration of DOP
equations~1! for different values ofa0. The amplitude along
a line crossing the center of a LS is plotted in Fig. 1, show
that the diffraction strongly enhances the spatial oscillatio

The parameters defining the shape of a LS are the sp
decay and the wave number of the oscillating tails. They

FIG. 1. Amplitude profile of a LS across a line crossing
center, evaluated numerically for different pump diffractions,a0

50.0005, 0.002, and 0.01. The amplitude of the modulation of
tails increases with increasing diffraction. The other parameters
a150.001,E52, D1520.6, D050.
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be analytically evaluated by means of a spatial stabi
analysis. Assume that the intensity of field is perturbed fr
its stationary value~2! in some place in transverse space~due
to effects of boundaries, spatial perturbation, or defects in
patterns!, and look how this perturbation decays~or grows!
in space. For this purpose we consider evolution in sp
instead of time. When the system has reached a statio
state, the solutions, which we assume have radial symme
can be written in the time-independent form

Ai~r !5Āi1Ai~r !. ~3!

After substituting Eq.~3! in Eq. ~1!, and considering re-
gions in space not close to the domain boundary, the res
ing system can be linearized in the deviationsAi(r ), and the
spatial evolution can be described by the system@15#

¹2dA5L•dA, ~4!

wheredAÄ(A0 ,A0* ,A1 ,A1* )† is a four-component pertur
bation vector andL is the linear matrix. In the case of reso
nant pump,D050,L is given by

FIG. 2. Real part~continuous line! and imaginary part~dashed
line! of the square root of the eigenvalues of the spatial stab
analysis as a function of signal detuning, for two different values
the diffraction ratio:a52 ~a! and a510 ~b!. The pump value is
E52.5.
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L5S 2 i /a 0 2~2i /a!Ā1 0

0 i /a 0 ~2i /a!Ā1*

iĀ1* 0 2 i ~11 iD1! iĀ0

0 2 iĀ1 2 iĀ0* i ~12 iD1!

D . ~5!

The solutions of the linear system~4! are of the form

dA~r !} eqr, ~6!

where the wave vector is allowed to be complex, in the fo
q5Req1 i Im q. From Eq. ~6!, it follows that a negative
value of Req indicates a spatial decay of perturbation, and
responsible for the localization, while a nonvanishing va
of Im q indicates the presence of a nonmonotonic~oscilla-
tory! decay@16#. Thus, the solution~3!, with the deviation
given by Eq.~6!, represents the assymptotic profile of the L
far from its core.

The expressions of spatial decay and modulation foll
from the study of the eigenvaluesm of L, which are the
solutions of the characteristic equation

a2m422a2D1m31~124aI1!m222D1~122aI1!m

14I 1~11I 1!50. ~7!

Comparing with the ansatz~6!, we identifyq5Am.
The simple analytical solution of Eq.~7! exists in the

resonant signal case only,D150, being

am25
1

A2
@2114aI16A128a~2a11!I 1#1/2, ~8!

whereI 15E21.
We see from Eq.~8! that the size of the LS depends on t

diffraction ratioa in a nontrivial way. This is in contrast with
previous studies of pattern formation in many nonlinear
tical systems~Lugiato-Lefever approach@17#!, where dif-
fraction appears simply as a scale factor in the wave vec
in the formak2.

FIG. 3. Spatial oscillations of the field outside a LS, as eva
ated numerically~continuous line! and analytically from the spatia
stability analysis~dashed line!, for E 5 2.5, D150.5, D050, a1

50.00025,a050.00125 (a55).
s
e

-

r,

In Fig. 2 we show Req ~continuous line! and Imq
~dashed line! evaluated from Eq.~7! as a function of signal
detuning, for a fixed pump valueE52.5 and two diffraction
values. In Fig. 2~a! the diffraction ratio is relatively smal
(a52). In this case, Req is always nonzero for positive
values of the detuning, and thus the spatial perturbati
~due to the presence of DW’s! decay for this particular value
of the pump. For negative detunings,q can become imagi-
nary. This corresponds to the ‘‘off-resonance’’ instability,
which roll patterns emerge.

For larger values of the diffraction ratio@see Fig. 2~b!,
where a510], q becomes purely imaginary not only fo
negative, but also for positive values of the detuning, in
cating the emergence of extended patterns in both side
the resonance. This new modulational instability, induced
pump diffraction, has been discussed in Ref.@18#, and leads
to hexagonal patterns with different characteristics than th
in the off-resonance region.

In order to check the validity of the previous results, Eq
~1! were integrated numerically using a split-step algorith
on a square grid with periodic boundary conditions. Line
and nonlinear terms were solved in real space by means

-

FIG. 4. Stability range of LS’s, in the planêE,D1&, evaluated
numerically for different values of diffraction ratio. In~a! the cases
a50 and a50.5 are shown. In this case, the stability range
enhanced at any value of the pump. In~b!, the casesa52 anda
55 are shown. The stability range is enhanced now in the sh
owed region. Above a critical pump, modulational instabilities d
crease the stability range.
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Runge-Kutta routine, while nonlocal terms were solved
Fourier space with a fast Fourier transform code. We u
typical grid sizes of 64364, and a temporal step of orde
1023. In every step a small amount of random noise w
added in the signal field.

FIG. 5. Several bound states~molecules! of localized structures,
obtained fora55,E52.5, D050, andD150.5. Double~a!, triple
~b! molecules, and a chain of five maxima~c! are shown.

FIG. 6. Section across they axis of the chain shown in Fig. 5~c!,
in the solid line. The dashed line represents a cut across acros
space outside the dark line.
d

s

In Fig. 3, a comparison between analytical~dashed curve!
and numerical results~continuous curve! for the spatial os-
cillations of the decaying tails of the domain boundary
given. The peak of the localized structure is omitted. N
that the correspondence is very good, even close to the
main boundary~line of zero intensity!. The parameters are
E52.5, D050, D150.5, a150.00025,a55. In this par-
ticular case four minima of the intensity are visible. Th
opposite segment of dark ring can be fixed by each of
minima. Obviously, the LS of the minimum size, as fixed
the first strongest maximum is the most stable one. Howe
dark rings with larger radii can also be stable@5#.

The stability range of LS’s is limited from one side due
contraction and annihilation of domains. From the other s
the LS existence range is limited either due to the prese
of modulational instabilities~modulations grow, and fill the
whole space! or due to expansion of domains. Since t
modulational instabilities are favored by diffraction, it ma
seem that it has a negative effect on the stability of LS
However, for pump values at which instabilities are absen
is expected that the increase in the modulation of the t
could prevent the full contraction, thus contributing to
enhancement of the stability range.

the

FIG. 7. Temporal evolution showing the decay to a single LS
the molecules given in Figs. 5~b! and 5~c!, when the diffraction is
decreased toa51.
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We have numerically calculated the stability range of
for different values of pump diffraction~Fig. 4!. In Fig. 4~a!,
the casesa50 ~circles! anda51/2 ~squares! are compared.
Open~full ! symbols indicates disappearance of LS’s by c
lapse expansion of domains~by modulational instability!. In
this particular case, the stability of LS’s is clearly enhanc
for any value of the pump. The continuous curve denotes
existence range of the homogeneous solutions~2!.

In Fig. 4~b! we represent the casesa52 ~squares! anda
55 ~triangles!. In this case, the stability range of LS’s
enhanced in the shadowed region, so there is an upper
for the pump value for the stability enhancement.

Our numerical calculations for larger pump diffractio
show that the stability is always enhanced, at least up
some value of the pump.

The presence of strong modulations in the tails also
lows the formation of more complex structures, in the fo
of bound states of single LS’s, or molecules. Some exam
of several molecules with different complexity are shown
Fig. 5. Examples with two and three maxima are shown
Figs. 5~a! and 5~b!, and a chain composed of five maxima
shown in Fig. 5~c!. The parameters chosen werea55, D1
520.3, D050, E52 for all the pictures.

The internal structure of the chain given in Fig. 5~c! is
more clearly appreciated in Fig. 6, where a cut across
middle (y532) has been done~full line!. The five maxima at
e
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equidistant points are seen. The field across a line outside
domain boundary is given by the dashed line, evaluated
y520.

In all these cases, the large value of the pump diffract
is responsible for the stability of such complex structur
increasing the spatial oscillations and then preventing
collapse. To show this fact, we have followed the evoluti
of the molecules given in Figs. 5~b!, 5~c!, decreasing the
diffraction value toa51 and keeping the other paramete
unchanged. The scenario is shown in Fig. 7, where the
tures have been taken at equally spaced times. The final
always corresponds to a single LS.

Concluding, we have investigated analytically the infl
ence of the pump diffraction in the stability of LS’s in
DOPO. The possibility of varying diffractions by means
the use of appropiate resonators allows us to show the
portant role that the amplitude oscillations of the spatial
cay of a LS play in its stability. Analytical results based on
spatial stability analysis have been compared with the
merical integration of the model, with good agreement.
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